3 research outputs found

    Imaging plus X: multimodal models of neurodegenerative disease

    Get PDF
    PURPOSE OF REVIEW: This article argues that the time is approaching for data-driven disease modelling to take centre stage in the study and management of neurodegenerative disease. The snowstorm of data now available to the clinician defies qualitative evaluation; the heterogeneity of data types complicates integration through traditional statistical methods; and the large datasets becoming available remain far from the big-data sizes necessary for fully data-driven machine-learning approaches. The recent emergence of data-driven disease progression models provides a balance between imposed knowledge of disease features and patterns learned from data. The resulting models are both predictive of disease progression in individual patients and informative in terms of revealing underlying biological patterns. RECENT FINDINGS: Largely inspired by observational models, data-driven disease progression models have emerged in the last few years as a feasible means for understanding the development of neurodegenerative diseases. These models have revealed insights into frontotemporal dementia, Huntington's disease, multiple sclerosis, Parkinson's disease and other conditions. For example, event-based models have revealed finer graded understanding of progression patterns; self-modelling regression and differential equation models have provided data-driven biomarker trajectories; spatiotemporal models have shown that brain shape changes, for example of the hippocampus, can occur before detectable neurodegeneration; and network models have provided some support for prion-like mechanistic hypotheses of disease propagation. The most mature results are in sporadic Alzheimer's disease, in large part because of the availability of the Alzheimer's disease neuroimaging initiative dataset. Results generally support the prevailing amyloid-led hypothetical model of Alzheimer's disease, while revealing finer detail and insight into disease progression. SUMMARY: The emerging field of disease progression modelling provides a natural mechanism to integrate different kinds of information, for example from imaging, serum and cerebrospinal fluid markers and cognitive tests, to obtain new insights into progressive diseases. Such insights include fine-grained longitudinal patterns of neurodegeneration, from early stages, and the heterogeneity of these trajectories over the population. More pragmatically, such models enable finer precision in patient staging and stratification, prediction of progression rates and earlier and better identification of at-risk individuals. We argue that this will make disease progression modelling invaluable for recruitment and end-points in future clinical trials, potentially ameliorating the high failure rate in trials of, e.g., Alzheimer's disease therapies. We review the state of the art in these techniques and discuss the future steps required to translate the ideas to front-line application.This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0

    Multi-study validation of data-driven disease progression models to characterize evolution of biomarkers in Alzheimer's disease

    Get PDF
    Understanding the sequence of biological and clinical events along the course of Alzheimer's disease provides insights into dementia pathophysiology and can help participant selection in clinical trials. Our objective is to train two data-driven computational models for sequencing these events, the Event Based Model (EBM) and discriminative-EBM (DEBM), on the basis of well-characterized research data, then validate the trained models on subjects from clinical cohorts characterized by less-structured data-acquisition protocols. // Seven independent data cohorts were considered totalling 2389 cognitively normal (CN), 1424 mild cognitive impairment (MCI) and 743 Alzheimer's disease (AD) patients. The Alzheimer's Disease Neuroimaging Initiative (ADNI) data set was used as training set for the constriction of disease models while a collection of multi-centric data cohorts was used as test set for validation. Cross-sectional information related to clinical, cognitive, imaging and cerebrospinal fluid (CSF) biomarkers was used. // Event sequences obtained with EBM and DEBM showed differences in the ordering of single biomarkers but according to both the first biomarkers to become abnormal were those related to CSF, followed by cognitive scores, while structural imaging showed significant volumetric decreases at later stages of the disease progression. Staging of test set subjects based on sequences obtained with both models showed good linear correlation with the Mini Mental State Examination score (R2EBM = 0.866; R2DEBM = 0.906). In discriminant analyses, significant differences (p-value ≤ 0.05) between the staging of subjects from training and test sets were observed in both models. No significant difference between the staging of subjects from the training and test was observed (p-value > 0.05) when considering a subset composed by 562 subjects for which all biomarker families (cognitive, imaging and CSF) are available. // Event sequence obtained with DEBM recapitulates the heuristic models in a data-driven fashion and is clinically plausible. We demonstrated inter-cohort transferability of two disease progression models and their robustness in detecting AD phases. This is an important step towards the adoption of data-driven statistical models into clinical domain

    Multi-study validation of data-driven disease progression models to characterize evolution of biomarkers in Alzheimer's disease

    Get PDF
    Understanding the sequence of biological and clinical events along the course of Alzheimer's disease provides insights into dementia pathophysiology and can help participant selection in clinical trials. Our objective is to train two data-driven computational models for sequencing these events, the Event Based Model (EBM) and discriminative-EBM (DEBM), on the basis of well-characterized research data, then validate the trained models on subjects from clinical cohorts characterized by less-structured data-acquisition protocols. Seven independent data cohorts were considered totalling 2389 cognitively normal (CN), 1424 mild cognitive impairment (MCI) and 743 Alzheimer's disease (AD) patients. The Alzheimer's Disease Neuroimaging Initiative (ADNI) data set was used as training set for the constriction of disease models while a collection of multi-centric data cohorts was used as test set for validation. Cross-sectional information related to clinical, cognitive, imaging and cerebrospinal fluid (CSF) biomarkers was used. Event sequences obtained with EBM and DEBM showed differences in the ordering of single biomarkers but according to both the first biomarkers to become abnormal were those related to CSF, followed by cognitive scores, while structural imaging showed significant volumetric decreases at later stages of the disease progression. Staging of test set subjects based on sequences obtained with both models showed good linear correlat
    corecore